

Emulator

Command Line Interface (CLI) Scripting
& API Guide

Global Support Email: support@itrinegy.com

Regional Telephone Hotline Support:

Americas: 1-888-448-4366 EMEA: +44 (0)1799 252 200

NE-ONE Emulator CLI Scripting and API Guide V4.0

2

NE-ONE Emulator CLI Scripting and API Guide V4.0

3

NOTICE

iTrinegy provides this publication "as is" without warranty of any kind, either
expressed or implied, including, but not limited to, the implied warranties of
merchantability or fitness for any particular purpose. iTrinegy will not be liable
(i) to you for any incidental, consequential, or indirect damages (including
damages for loss of business profits, business interruption, loss of business
information, and the like) arising out of the use of or inability to use this
product even if iTrinegy or any authorised iTrinegy representative has been
advised of the possibility of such damages, or (ii) for any claim by any other
party. Further, iTrinegy reserves the right to make changes or improvements
to the product described in this guide and to this publication without obligation
of iTrinegy to notify any person of such revision or changes.

Trademarks

iTrinegy and iTrinegy NE-ONE are trademarks of iTrinegy Limited. All other
trademarks or registered trademarks are the property of the respective
manufacturers of the products associated with them.

Copyright

Copyright © 2011-2018 iTrinegy Limited.
All rights reserved.

No part of this publication may be reproduced, translated or distributed without
the prior written permission.

Edition: V4.0 May 2018

NE-ONE Emulator CLI Scripting and API Guide V4.0

4

NE-ONE Emulator CLI Scripting and API Guide V4.0

5

Contents

1 Purpose and Applicability 7

2 Introduction 8

3 Emulator Concepts 9

3.1 Physical Ports and Port Pairs 9

3.2 Emulations 9

3.3 Links 10

4 Command Line Requirements 11

5 Starting, Stopping and Listing Standard Emulations 12

5.1 Listing All Defined Standard Emulations 12

5.2 Starting a Standard Emulation 12

5.3 Stopping a Standard Emulation 13

5.4 Stop all Standard Emulations 14

5.5 Show the Running Emulations 14

5.6 List Compatible (Similar) Standard Emulations with a Started

Emulation 15

5.7 List Compatible (Similar) Standard Emulations with a Named

Emulation 16

5.8 Dynamically change to Emulation without Stopping 16

6 Playing, Stopping and Listing Scenarios 18

6.1 Get a List of Scenarios 18

6.2 Play (Run) a Scenario 19

6.3 Pause a Playing (Running) Scenario 20

6.4 Resume a Paused Scenario 20

6.5 Stop a Playing (Running) Scenario 21

6.6 Set Scenario Speed 22

6.7 Advance to Next Scenario Frame 23

6.8 Go Back to Previous Scenario Frame 23

6.9 Get Scenario Running Information 24

6.10 Get Running Scenario Details 25

6.11 Get Scenario Errors 27

6.12 Run scenario Logging (advanced) 28

6.12.1 --setScenarioRunLogs 28

6.12.2 --setScenarioRunLogs 29

6.12.3 --getScenarioRunLog 29

6.12.4 --playScenario with –logtrans 29

NE-ONE Emulator CLI Scripting and API Guide V4.0

6

7 Additional Commands 31

7.1 Reboot the Emulator 31

7.2 Get License Details 31

7.3 Get License Status 32

7.4 Get Ports 33

7.5 Get Version 33

8 Methods of Issuing Emulator Commands 34

8.1 From the Command Line using necli.py 34

8.2 The Sockets API 35

8.2.1 Get Remote Certificate 35

8.2.2 Issue the commands 36

9 Troubleshooting 37

9.1 Unicode Error from Client 37

NE-ONE Emulator CLI Scripting and API Guide V4.0

7

1 Purpose and Applicability

The purpose of this guide is to:

• Explain how to control the Emulator from the command line or a

TCP sockets interface

NE-ONE Emulator CLI Scripting and API Guide V4.0

8

2 Introduction

The Emulator’s GUI and LCD Panel send commands to setup and

control the Emulator.

The command line and sockets API interface provide the ability for you

to perform important functions within your own scripting or

programming.

This document covers all CLI and API options available in the Emulator

which at this time are:

● Start and stop an emulation

● List all the defined emulations

● List all the defined emulations filtered by types:

○ Point to Point (ptp)

○ Multi Hop

○ Profiled

● Show the running emulations

● Stop all the running emulations

NE-ONE Emulator CLI Scripting and API Guide V4.0

9

3 Emulator Concepts

It is worth being familiar with the concepts and operation of the

Emulator as explained in the NE-ONE - Emulator User & Administrator

Guide before reading this guide or attempting to use the command

line or API.

Here are the essentials when it is boiled down:

The Emulator transfers packets from one physical network port (or VM

equivalent, when it’s running in a VM environment) to another physical

network port. Whilst transferring the packet the Emulator can perform

certain actions on the packet, such as delaying the packet, losing the

packet and damaging the packet.

There are three major concepts in the Emulator:

1. Physical Ports and Port Pairs

2. Emulations

3. Links

These are detailed in the sections below.

3.1 Physical Ports and Port Pairs

Physical ports connect the Emulator to the external network. The ports

are used in port pairs:

o Port Pair 0 & 1

o Port Pair 2 & 3

The latter port pair is not available on all models.

Essentially packets entering one port in a port pair will emerge from the

other port, unless the packet is (deliberately) lost.

3.2 Emulations

Emulations consist of one or more Links (see next section), with

appropriate settings for each link, which have been named and saved

on the Emulator.

There may be many emulations stored on the Emulator, but only one

emulation can be started, on a Port Pair, at a time.

Emulations are separated into three types:

o Point to Point

o Multi Hop

o Profiled

The User guide describes these fully, but the API will divide emulations

into these categories when asked for a list.

NE-ONE Emulator CLI Scripting and API Guide V4.0

10

3.3 Links

Links allow multiple network circuits to be provided simultaneously by

channelling appropriate traffic (by IP address, IP Port, VLAN id) through

a particular link.

Which link traffic will use is determined by Link Qualification Criteria

setup when the emulation is defined in the GUI.

The process is that packets enter a port in a port pair (for example port

0) and then based on link qualification criteria are directed to a link.

The link then applies the defined network limitations (impairments) and

the packets are recombined from the separate links and output

through the other port in the port pair (port 1 in our example).

The main user guide describes this in detail.

NE-ONE Emulator CLI Scripting and API Guide V4.0

11

4 Command Line Requirements

The Emulator can be scripted in one of 2 ways:

1. By using the supplied sample Python command line script called

necli.py (clearly this will need an installed python interpreter)

2. By creating an application that creates a TCP socket and

connects directly to the Emulator using TCP port 7292 using SSL

When using the command line script or API there are certain

requirements that must be met in order to get a successful outcome.

Whether used from the API or from the CLI, all of the command options

are prefixed with ‘--‘ (two dashes) to help them stand out, and, where

there is an argument the argument should be quoted to avoid issues

with spaces, also a valid username and password must be supplied for

the Emulator. e.g. from Windows (assuming the necli.py is available in

the local folder and a python interpreter has been installed as is in the

PATH) you can issue commands like this:

C:\Users\Lara> python necli.py --host 192.168.202.194 --user admin --

password admin --getemulationsbyportpair

Some of the commands require more than one parameter, where that

is the case then there is still only one argument but the parameters are

separated by a semi-colon.

The necli.py script sends all of the commands (except for --host)

directly to the Emulator and echo’s any responses direct to the terminal

(stdout). Responses from the Emulator are also in the form of

commands and values. For commands that do not have a specific

response then the command “--ok” is returned. If there is an error when

executing the command then it will return --error “<Message>”. Below are

some examples along with their return values:

C:\Users\Lara>python necli.py --host 192.168.202.194 --user admin --

password admin --getlicense ports

→ --license "ports;4;"

C:\Users\Lara>python necli.py --host 192.168.202.194 --user admin --

password admin --notACommand

→ --error “Option [--notACommand] Unknown”

The examples below all assume the command line python script

necli.py is being used. For full information on how to use the command

line and also the sockets API please see section 8 Methods of Issuing

Emulator Commands on page 34.

NE-ONE Emulator CLI Scripting and API Guide V4.0

12

5 Starting, Stopping and Listing Standard Emulations

This section documents all the commands related to locating defined

standard emulations, as well as starting & stopping standard

emulations. Standard Emulations refers to Emulations that are not

Scenarios (i.e. not changing between standard emulations over time)

5.1 Listing All Defined Standard Emulations

Standard Emulations are defined (created and saved) by the web GUI.

They can be launched by the LCD panel and CLI/API, but the question

is what standard emulations are available. This command lists all the

saved standard emulations present on the Emulator.

Syntax is as follows:

--getDefinedEmulations [--type (ptp|multihop|profiled)]

This lists all the current defined standard emulations belonging to the --

user {user} or public stored on the Emulator. If supplied with optional

filter argument --type, then it only returns all the defined standard

emulations for that particular type.

Output:

--names “{number of results};{type 1};{name 1};{type 2};{name

2};{type 3};{name 3};...”

Here, {number of results} is the number of defined standard emulations

found on the Emulator for the user (this includes public emulations).

Example:

$ python necli.py --host 192.168.202.194 --user admin --

password admin --getdefinedemulations

→ --names

12;ptp;3G_Slow_PoorQuality;ptp;Satellite_Slow_PoorQuality;mult

ihop;Wan10MbpsToWan155Mbps;ptp;WAN_10Mbps_PoorQuality;ptp;2G_S

low_GoodQuality;multihop;WiFi56MbpsToADSLGood;ptp;ADSL_Medium_

GoodQuality;ptp;LAN_No_Impairment;ptp;WiFi_56Mbps_PoorQuality;

ptp;LAN_1Gbps_AvgQuality;ptp;4G_Slow_PoorQuality;ptp;SDSL_Slow

_GoodQuality;

This says there are 12 standard emulations and then list them as

type;name pairs

5.2 Starting a Standard Emulation

To start any standard emulation, it must be present on the Emulator.

Standard Emulations are started by specifying their name and the port

pair the standard emulation is to be started on:

NE-ONE Emulator CLI Scripting and API Guide V4.0

13

Syntax is as follows:

--startEmulation {name} --portPair (0|1)

This starts a standard emulation with the name specified (if in doubt you

can get a list of defined standards emulations from --

getDefinedEmulations) on the specified port pair.

Output:

 --ok if the standard emulation name is successfully started on port

pair. Otherwise --error <error message> if there is already an

emulation on the port pair or emulation name doesn’t exist. <error

message> will indicate the actual error

Example:

$ python necli.py --host 192.168.202.194 --user admin --

password admin --startEmulation 3G_Slow_PoorQuality --

portPair 0

→ --ok

And if you try again without stopping the first:

$ python necli.py --host 192.168.202.194 --user admin --

password admin --startEmulation 3G_Slow_PoorQuality --

portPair 0

→ --error “Emulation is already running on port pair 0”

Note

If the emulation name contains a space then the name will need to be

quoted e.g. –startEmulation “Mobile Test 1”

5.3 Stopping a Standard Emulation

This stops whatever emulation is running on the specified port pair.

After stopping the emulation no traffic will be passed on on that port

pair.

Syntax is as follows:

--stopEmulation --portPair (0|1)

 If no emulation is running on that port pair it will return an error.

NOTE: When the emulation is stopped, packets may still be transmitted

through the emulator if Default Transmission is enabled for that Port Pair.

Output:

NE-ONE Emulator CLI Scripting and API Guide V4.0

14

--ok if a running emulation is stopped successfully. If there is no

emulation running on the port pair, the command will output --error
“<error message>”

Example:

C:\Users\Lara>python necli.py --host 192.168.202.194 --user

admin --password admin --stopemulation --portPair 0

→ --ok

And if you try it again, now that there is no emulation running:

C:\Users\Lara>python necli.py --host 192.168.202.194 --user

admin --password admin --stopemulation --portPair 0

→ --error "No emulation is running on the port pair"

5.4 Stop all Standard Emulations

This will stop all emulations running on any port pair. It’s a good way of

ensuring you’re back to the Emulator’s initial state with no emulations

running.

Syntax is as follows:

--stopAllEmulations

Unlike --stopEmulation, this command will always return --ok even

there is no emulation running on any port pair.

Output:

--ok in all cases

Example:

C:\Users\Lara>python necli.py --host 192.168.202.194 --user

admin --password admin --stopallemulations

→ --ok

5.5 Show the Running Emulations

This will show you what emulations are running, either in total for all port

pairs available, or for a specified port pair.

Syntax is as follows:

--getEmulationsByPortPair [--portPair (0|1)]

Lists the currently running emulations for both port pairs 0 (ports 0 and 1)

and 1 (ports 2 and 3). If supplied with the optional --portPair

<number> parameters, then the command only returns the emulations

running on the port pair specified by <number>.

NE-ONE Emulator CLI Scripting and API Guide V4.0

15

Output:

Without the –portPair <number> argument:

 --emulations “{number of results};{port pair id};{emulation

name};{port pair id};{ emulation name};”

With --portPair <number> arguments:

--emulations “1;{port pair id};{name}”

Example:

C:\Users\Lara>python necli.py --host 192.168.202.194 --user

admin --password admin --getEmulationsByPortPair

→ --emulations "2;0;3G_Slow_PoorQuality;1;;"

So its saying – 2 emulations follow… First, port pair 0 is running

3G_Slow_PoorQuality, then, port pair 1 is running nothing (;;)

5.6 List Compatible (Similar) Standard Emulations with a

Started Emulation

This will produce a list of all the Compatible standard emulations started

on a portpair.

For an emulation to be Compatible with the current one it must have

the same links in the same positions. The links and end-points do not

need to have the same names or be in the same states

(enabled/disabled). Implicitly, therefore, multihop emulations are not

compatible with single hop emulations.

Syntax is as follows:

--getCompatibleEmulations --startedOnPortPair (0|1)

Output:

--names "{number of results};{type};{emulation name};{type};{

emulation name};"

Example:

C:\Users\Lara>python necli.py --host 192.168.202.194 --user

admin --password admin --getCompatibleEmulations –-

startedOnPortPair 0

→ --names "{9;ptp;2G_Slow_GoodQuality;

ptp;4G_Slow_PoorQuality;ptp;ADSL_Medium_GoodQuality;ptp;

LAN_1Gbps_AvgQuality;ptp;LAN_No_Impairment;ptp;SDSL_Slow_GoodQ

uality;ptp;Satellite_Slow_PoorQuality;ptp;WAN_10Mbps_PoorQuali

ty;ptp;WiFi_56Mbps_PoorQuality;"

NE-ONE Emulator CLI Scripting and API Guide V4.0

16

5.7 List Compatible (Similar) Standard Emulations with a

Named Emulation

This will produce a list of all the Compatible standard emulations to

named (template) standard emulation. It operates in a very similar

way to section 5.6: List Compatible (Similar) Standard Emulations with a

Started Emulation, above. See that section for the definition of a

compatible emulation.

Syntax is as follows:

--getCompatibleEmulations --templateEmulation <name>

Where <name> is the name of a “template” standard emulation i.e.

the one which is used as a basis for determining compatibility.

Output:

--names “{number of results};{type};{emulation name};{type};{

emulation name};

5.8 Dynamically change to Emulation without Stopping

This allows you to change (update) the current running standard

emulation parameters (on a port pair) to those of a Compatible

(Similar) standard emulation.

Links will retain the names of the emulation that was started with –start

or via the GUI). It does not matter if links are enabled or disabled

differently, their status will change as required.

Syntax is as follows:

--changeToEmulation <name> --portPair (0|1) [--force]

The option --force will perform an emulation stop, and then start if the

new emulation is not compatible with the running standard emulation.

Examples:

1) Compatible change
C:\Users\Lara>python necli.py --host 192.168.202.194 --

user admin --password admin –-changeToEmulation

2G_Slow_GoodQuality –portPair 0

 → --ok

NE-ONE Emulator CLI Scripting and API Guide V4.0

17

2) Not compatible change, no force
C:\Users\Lara>python necli.py --host 192.168.202.194 --

user admin --password admin –-changeToEmulation

Wan10MbpsToWan155Mbps –-portPair 0

→ --error "Cannot change to emulation: incompatible

configuration"

3) Not compatible change, force
C:\Users\Lara>python necli.py --host 192.168.202.194 --

user admin --password admin –-changeToEmulation

Wan10MbpsToWan155Mbps –-portPair 0 --force

→ --ok

NE-ONE Emulator CLI Scripting and API Guide V4.0

18

6 Playing, Stopping and Listing Scenarios

These commands relate to the Scenario functionality in the NE-ONE i.e.

the ability to play time based emulations. These are created by putting

together one or more (usually more) standard emulations or scenarios

(i.e. scenarios can include other scenarios too) with transitions with the

NE-ONE GUI’s Scenario editor. It will be worth familiarising yourself with

the operation of Scenarios in the GUI before using these API

commands

At this time the API concerns itself solely with playing (running) such

timed Scenarios not creating or editing them which is done in the

scenario editor GUI

6.1 Get a List of Scenarios

This allows you to get a list of all the available scenarios, their types (i.e.

point to point or multi-hop), durations and end mode (i.e. at the end of

the scenario: Stop the emulation, Stay in the last configuration, Go

back to the beginning).

Syntax is as follows:

--listScenario

Output:

--scenarios "{number of scenarios};{name of

scenario};{emulation type};{duration};{end mode};...."

Where:

number of scenarios - is number of defined scenarios that are VALID

(i.e. ready to play).

Each valid scenario is then listed and comes with 4 fields:

• Name of Scenario - Scenario name

• Emulation type – the emulation type, ‘ptp’ or ‘multihop’

• Duration – the total duration of the Scenario (in seconds)

• End mode – the Scenario’s behaviour when reaching the end (1 -

Stop Emulation, 2 - Stays On with the parameters from the last

element of the scenario, 3 – Repeat i.e. go back to the beginning)

Examples:

NE-ONE Emulator CLI Scripting and API Guide V4.0

19

C:\Users\Lara>python necli.py --host 192.168.202.135 --user admin --

password admin --listScenario

→ --scenarios

"3;Dual_Link_1;ptp;60;1;Dual_Link_2;ptp;60;1;Single_Link_1;ptp;100;1;"

6.2 Play (Run) a Scenario

This allows you to run a scenario by name specifying the point pair on

which it should run and the playback speed (the default is 1x – normal

speed)

Syntax is as follows:

--playScenario {Scenario Name} --portPair {Port Pair} [--speed

{Speed} (one of 1|2|4|0.5|0.25)]

Output:

--ok (if successful) or

--error “{reason}” (if there was a problem – the reason

specifies the issue)

Where:

• Scenario Name - the scenario name to play

• Port Pair - which Port pair to start an scenario on e.g. 0 or 1

• Speed – is the speed to run the scenario at. Valid values are 1, 2, 4,

0.5, 0.25 which will play the scenario faster (2, 4), at normal speed

(1) or slower (0.5, 0.25). The speed value is a divisor for how long 1

second of scenario will actually take. If speed is not specified, it will

be 1 which is normal speed (1x)

Examples:

C:\Users\Lara>python necli.py --host 192.168.202.135 --user admin --

password admin --playScenario Dual_Link_1 --portpair 0

→ --ok

The scenario now plays (in the background).

NE-ONE Emulator CLI Scripting and API Guide V4.0

20

Note

If the scenario name contains a space then the name will need to be

quoted e.g. --playScenario “My Scenario”

6.3 Pause a Playing (Running) Scenario

This will pause the scenario running on a port pair i.e. it will freeze the

timer but leave the emulation in the state that it is currently in (i.e. the

emulation will be running).

Syntax is as follows:

--pauseScenario --portPair {portPair}

Output:

--ok

--error “{reason}”

Where:

{portPair} is either 0 for the first port pair (ports 0 & 1) or 1 for the second

port pair (ports 2 & 3)

Examples:

C:\Users\Lara> python necli.py --host 192.168.202.135 --user admin --

password admin --pauseScenario --portpair 0

→ --ok

6.4 Resume a Paused Scenario

This will resume a previously paused scenario running on a port pair i.e.

it will resume the timer from where it was paused and the scenario will

continue to run from that point

Syntax is as follows:

--resumeScenario --portPair {portPair}

Output:

NE-ONE Emulator CLI Scripting and API Guide V4.0

21

--ok

--error “{reason}”

Where:

{portPair} is either 0 for the first port pair (ports 0 & 1) or 1 for the second

port pair (ports 2 & 3)

Examples:

C:\Users\Lara> python necli.py --host 192.168.202.135 --user admin --

password admin --resumeScenario --portpair 0

→ --ok

6.5 Stop a Playing (Running) Scenario

This will stop the scenario running on a port pair i.e. the timer will be

stopped and the emulation will be stopped.

Syntax is as follows:

--stopScenario --portPair {portPair}

Output:

--ok

--error “{reason}”

Where:

{portPair} is either 0 for the first port pair (ports 0 & 1) or 1 for the second

port pair (ports 2 & 3)

NOTE: When the scenario/emulation is stopped, packets may still be

transmitted through the emulator if Default Transmission is enabled for

that Port Pair.

Examples:

C:\Users\Lara> python necli.py --host 192.168.202.135 --user admin --

password admin --stopScenario --portpair 0

NE-ONE Emulator CLI Scripting and API Guide V4.0

22

→ --ok

6.6 Set Scenario Speed

This has two functions:

1. To set the default playback speed for a port pair

2. To change the speed at which a currently running scenario is

being played back – this value will then be remembered for the

next time a scenario is started on the port pair

Syntax is as follows:

--setSpeed {Speed} (one of 1|2|4|0.5|0.25) --portPair {portPair}

Output:

--ok

--error “{reason}”

Where:

{Speed} is one of 1|2|4|0.5|0.25. They will play the scenario faster (2,

4), at normal speed (1) or slower (0.5, 0.25). The speed value is a divisor

for how long 1 second of scenario will actually take.

{portPair} is either 0 for the first port pair (ports 0 & 1) or 1 for the second

port pair (ports 2 & 3)

Examples:

C:\Users\Lara> python necli.py --host 192.168.202.135 --user admin --

password admin --setSpeed 0.25 --portPair 0

→ --ok

This example runs the scenario at ¼ of normal speed i.e. the scenario

and each element in it takes 4 times as long to complete. If the

scenario is running in the GUI the scenario progess bar moves at ¼ of its

normal rate

NOTE

Issuing the –setSpeed CLI or API does not immediately change the

value in the GUI’s dropdown speed menu (if the GUI is being used).

However, if you play a scenario in the GUI it will accept the change of

speed and the GUIs dropdown changes at that moment.

NE-ONE Emulator CLI Scripting and API Guide V4.0

23

6.7 Advance to Next Scenario Frame

This will advance the scenario to the next Scenario Frame i.e. to the

start of the next Element, which may be a transition or an Emulation. If

it currently running a transition when the command is received, it will

abandon it and set the values for the next Emulation Element.

Syntax is as follows:

--nextScenFrame --portPair {portPair}

Output:

--ok

--error “{reason}”

Where:

{portPair} is either 0 for the first port pair (ports 0 & 1) or 1 for the second

port pair (ports 2 & 3)

Examples:

C:\Users\Lara> python necli.py --host 192.168.202.135 --user admin --

password admin --nextScenFrame --portPair 0

→ --ok

NOTE

If you are in the last element of the scenario it will not advance to the

end, instead giving an error saying "Cannot fast forward: already at the

end of the scenario"

6.8 Go Back to Previous Scenario Frame

This will take the Scenario back to the start of the previous Scenario

Frame i.e. to the start of the previous Element, which may be a

transition or an Emulation. If it currently running a transition when the

command is received, it will abandon it and set the values for the

previous Emulation Element.

Syntax is as follows:

--prevScenFrame --portPair {portPair}

NE-ONE Emulator CLI Scripting and API Guide V4.0

24

Output:

--ok

--error “{reason}”

Where:

{portPair} is either 0 for the first port pair (ports 0 & 1) or 1 for the second

port pair (ports 2 & 3)

Examples:

C:\Users\Lara> python necli.py --host 192.168.202.135 --user admin --

password admin --prevScenFrame --portPair 0

→ --ok

NOTES

• Unlike a Music player it will not take you back to the start of the

current element if more than a few seconds of the element have

passed. To achieve this use –prevScenFrame and immediately

afterwards --nextScenFrame

• If you are in the first element of the scenario it will not advance to

the beginning, instead giving an error saying "Cannot rewind:

already at the start of the scenario"

6.9 Get Scenario Running Information

This gets information on Scenarios running by portpair. You can see if

scenarios are running and, if running, the name of the Scenario.

Syntax is as follows:

--getScenarioByPortPair [--portPair {portPair}]

Output:

With the optional portPair argument:

--status “1;{portPair};{running};{scenario name};”

Without the optional portPair argument:

--status “{Number of ports};0;{running for portpair 0};{name

of scenario for portpair 0};…” (for each portpair)

NE-ONE Emulator CLI Scripting and API Guide V4.0

25

Where:

• {portPair} is either 0 for the first port pair (ports 0 & 1) or 1 for the

second port pair (ports 2 & 3)

• {running} is 0 if a Scenario is running on that portpair

• {scenario name} is the name of the scenario if there is one

running on that portpair

Examples:

Here there are two port pairs (4 ports) and no scenarios are running on

any portpair:

C:\Users\Lara> python necli.py --host 192.168.202.135 --user admin --

password admin --getScenarioByPortPair

→ --status "2;0;0;;1;0;;"

Here there are two port pairs (4 ports) and a Scenario called

“Dual_Link_1” is running on portpair 0:

C:\Users\Lara> python necli.py --host 192.168.202.135 --user admin --

password admin --getScenarioByPortPair

→ --status "2;0;1;Dual_Link_1;1;0;;"

In the next two examples there are two port pairs (4 ports) and a

Scenario called “Dual_Link_1” is running on portpair 0:

C:\Users\Lara> python necli.py --host 192.168.202.135 --user admin --

password admin --getScenarioByPortPair --portpair 0

→ --status "1;0;1;Dual_Link_1;"

C:\Users\Lara> python necli.py --host 192.168.202.135 --user admin --

password admin --getScenarioByPortPair --portpair 1

→ --status "1;1;0”

6.10 Get Running Scenario Details

This gets details on Scenarios running by portpair. You can see the

status of scenarios, when they were started, the Element name,

remaining time, speed they are running at, and error status.

NE-ONE Emulator CLI Scripting and API Guide V4.0

26

Syntax is as follows:

--scenarioStatus [--portPair {portPair}]

Output:

With the optional portPair argument it returns details only

for the portpair specified, without the optional portPair

argument it returns the number of scenarios and details for

each portPair:

--status “{number of portpairs};{portPair};{scenario

name};{status};{at time};{started At};{element name};{time

left};{speed};{error}…”

--error “Error message”

Where:

• {portPair} - is either 0 for the first port pair (ports 0 & 1) or 1 for the

second port pair (ports 2 & 3)

• {scenario name} - is the name of the scenario if there is one

running on that portpair

• {status} - current status of the running scenario. Possible values

are STOP, PLAY, PAUSE indicating the status of the scenario is

currently playing

• {at time} – the time from the start scenario in seconds

• {started At} - UTC time (in milliseconds) when the scenario is

started (Unix time in ms)

• {element name} – the name of the Emulation Element currently in

force – if it is a transition the name will be Gradual, Variable or

Outage

• {time left} – the time left in the current element, named above

• {speed} – the speed the Scenario is running at. It will be on of

1|2|4|0.5|0.25. The speed value is a divisor for how long 1

second of scenario will actually take.

• {error} – indicates any error so far during the running scenario (1 -

error, 0 - no error)

Examples:

In the next two examples there are two port pairs (4 ports) and a

Scenario called “Dual_Link_1” is running on portpair 0:

C:\Users\Lara> python necli.py --host 192.168.202.135 --user admin --

password admin --scenarioStatus --portpair 0

NE-ONE Emulator CLI Scripting and API Guide V4.0

27

→ --status "1;0;Dual_Link_1;PLAY;11;1490352881053;Test_twolink_1;9;1;0"

So, on Portpair 0 a scenario called Dual_Link_1 is running. It’s status is

PLAY, it has been running for 11 seconds, the absolute start time of the

scenario in UTC ms time is 1490352881053, the current element is

Test_twolink_1 with 9 seconds left, for that element, running at speed 1

(1x = Normal) and Error = 0 means no current error.

C:\Users\Lara> python necli.py --host 192.168.202.135 --user admin --

password admin --scenarioStatus --portpair 1

→ --error "'"Scenario is not loaded or running on the port pair"\n'"

In the next example a Scenario called “Dual_Link_1”, running on

portpair 0 is in the Element “Gradual” i.e. a Gradual transition:

C:\Users\Lara> python necli.py --host 192.168.202.135 --user admin --

password admin --scenarioStatus --portpair 0

--status "1;0;Dual_Link_1;PLAY;27;1490354519057;Gradual;12;1;0"

You can see the word Gradual in the element position and there is 12

seconds of Gradual left to run.

6.11 Get Scenario Errors

This will retrieve a list of errors from the currently running scenario.

Syntax is as follows:

--getScenarioErrors --portPair {portPair} [--reset]

Output:

--errors “{time};{message};{time};{message}...”

Where:

• --portPair {portPair} –is a switch to choose which portpair. either 0

for the first port pair (ports 0 & 1) or 1 for the second port pair

(ports 2 & 3)

• --reset - is an optional command switch which will reset the error

list after returning them

NE-ONE Emulator CLI Scripting and API Guide V4.0

28

• {time} - at which second the error occurred relataive to the

Scenario start

• {message} - details of the error

Examples:

C:\Users\Lara>python necli.py --host 192.168.202.135 --user admin --

password admin --getScenarioErrors –portPair 0

(if no errors) → --errors

(if no scenario running) → --error "Scenario is not loaded or running on

the port pair"

6.12 Run scenario Logging (advanced)

These commands are used for the automated testing of the CLI/API

should only be used under the guidance of your Support

representative, not least due to very high amounts of output produced

which can affect the performance of the scenario server.

6.12.1 --setScenarioRunLogs

Syntax is as follows:

--setScenarioRunLogs [--portPair {portPair}] [--runLogDir {dir}]

This will turn on the run log feature in the scenario server. If portPair

argument is not given, then it will switch on run time logging for all the

port pairs. If runLogDir is not given, then the default directory for

creating run time log files is /tmp.

• The log filename is the same as the scenario name with ‘.log’

extension instead and port pair suffix. For example: Testing.scen is

loaded and run in portpair 0, the log file is Testing_0.log. If the log

file is existed from previous run, it will be renamed to

Testing_0.log.old

• The log file ONLY contains entries during the lifetime of a running

scenario.

• Each entries is a single line with newline terminated representing

a single interval.

• Each interval line is prefixed with “Interval {secs}:”

• Not all interval entries are logged into the scenario log file.

Intervals with notable action are logged, such as

• Start/End of the scenario

• Start/End of a component

NE-ONE Emulator CLI Scripting and API Guide V4.0

29

• Pause/Resume of scenario

• Speed change

• Component skip

• (TBD) micro intervals of transition

6.12.2 --setScenarioRunLogs

Syntax is as follows:

--setScenarioRunLogs [--portPair {portPair}] --off

This will turn off the run log feature:

6.12.3 --getScenarioRunLog

Syntax is as follows:

--getScenarioRunLog {scenario name} --portPair {portPair} [--interval

{interval}]

This will return the log entries of the scenario previously run. If --interval is

not given, then all log entries are returned.

Where:

--interval accepts the following forms:

• -{num} -- means logs from interval 0 to interval num

• +{num} -- means logs from interval num+1 to the latest logs

• {num1}-{num2} -- means logs between the interval

• {num1},{num2},{num3} -- means a list of specific logs at specific

intervals

6.12.4 --playScenario with –logtrans

Syntax is as follows:

--playScenario {Scenario name} --portpair {portPair} --logtrans

NE-ONE Emulator CLI Scripting and API Guide V4.0

30

This starts logging which includes the transition steps.

Example:

C:\Users\Lara> python necli.py --host 192.168.202.135 --user admin --

password admin --playScenario Dual_Link_1 --portpair 0 --logtrans

--ok

NE-ONE Emulator CLI Scripting and API Guide V4.0

31

7 Additional Commands

There are several commands that are not directly related to emulations

that help to provide information on the emulation and the general

configuration of the Emulator.

7.1 Reboot the Emulator

This reboots the Emulator

Syntax is as follows:

--reboot

The Emulator responds with --ok and then reboots.

Output:

--ok

Example:

C:\Users\Lara>python necli.py --host 192.168.202.194 --user

admin --password admin --reboot

→ --ok

7.2 Get License Details

Details of a part of the product license can be retrieved by specifying

one of the identifiers in the table below.

Syntax is as follows:

--getLicense <Identifier>

The <Identifier> indicates what license information is required. The

table below shows the list of <Identifiers> that can be requested:

NE-ONE Emulator CLI Scripting and API Guide V4.0

32

Identifier Description

Ports The list of ports that are licensed.

A comma separated list of ports is

returned

Links The number of licensed links

Bandwidth The maximum bandwidth allowed

ProductId The Product Identifier Number (18

for Model 1, 19 for Model 5, 20 for

Model 10 and 21 for Model 20)

Output:

--license “<Identifier>;<items>…”

Example:

The example shows the retrieval of the ProductId:

C:\Users\Lara>python necli.py --host 192.168.202.194 --user

admin --password admin --getLicense “ProductId”

→ --license “ProductId;14”

7.3 Get License Status

This get the status – licenced or not, and if a temporary licence exists

the license expiry date.

Syntax is as follows:

--getLicenseStatus

Output:

--licenseStatus <N>;<expiry date>|permanent

Where

<N> = 1 if the licence is valid and current, and 0 if it does not exist or

has expired.

<expiry date> in the form YYYY-MM-DD is the date the licence expires

or the word permanent if there is no expiry.

Example:

C:\Users\Lara>python necli.py --host 192.168.202.194 --user

admin --password admin --getLicenseStatus

→ --licenseStatus 1;2015-12-20

NE-ONE Emulator CLI Scripting and API Guide V4.0

33

7.4 Get Ports

This command returns the Ports in the Emulator, whether they are

available or in use by an emulation.

Syntax is as follows:

--getPorts

Output

--ports “<number of ports>;<port id1>;<name1>;<port parent

id1>;<emulation_id1>...”

where the numbers of ports returned is <number of ports> and then

there are 4 values per port:

<port idN> - the internal ID of the port

<nameN> - the name of the port

<port parent idN> - the id of the parent port of this port - if any (-1 if no

parent)

<emulation_idN> - the id of the emulation which this port is assigned (-1

if there is no emulation)

If the ports have not been assigned IP addresses then they will have the

names 0,1,2,3, if they have been assigned an address then you will see

names like Port0, Port1. In the latter case the port parent id will tell you

what the parent port is.

Example

C:\Users\Lara>python necli.py --host 192.168.202.194 --user

admin --password admin --getPorts

→ --ports "4;2;2;-1;-1;3;3;-1;-1;4;Port0;0;0;5;Port1;1;0;"

7.5 Get Version

Outputs version numbers for the Emulator in addition it outputs the build

date/time of the emulation engine

Syntax is as follows:

--getVersion

Output

NE-ONE Emulator CLI Scripting and API Guide V4.0

34

--versions "<number of components>;<component name

1>;<component version 1>;<component name 2>;<component version

2>;…

Where <number of components> is the number of components for

which build numbers are being returned. Then for each component

there are two parts:

• Component name – the name of the component e.g.

o Build – the overall Product Build

o WebGUI – the Web GUI

o Ippe – the emulation engine

• Component version/build

Example

C:\Users\Lara>python necli.py --host 192.168.202.194 --user

admin --password admin --getVersion

--ok "3;Build;1.6.0;WebGui;1.8.5;Ippe;8.0.3 201503241158;"

This says we’re running version 1.6.0 with a Web GUI version of 1.8.5 and

an Emulation engine of 8.0.3 201503241158

8 Methods of Issuing Emulator Commands

The 2 methods of doing this are outlined below:

1. From the Command Line using necli.py

2. Using the Sockets API

8.1 From the Command Line using necli.py

If you want to control Emulator from the command line you can use

the provided script necli.py. That implies an installed python language

interpreter to successfully run it. The scripts have been tested with both

python 2.x and python 3.x.

You must also supply necessary parameters for the user and password

you want to use as well as the IP address of the Emulator you want to

control and last but not least the task you want to perform.

In generic terms that looks like this:

$ python necli.py --host <Emulator IP Address> --user

<username> --password <password> --command [--options…]

NE-ONE Emulator CLI Scripting and API Guide V4.0

35

You’ll be interested in the result of your commands, so sending the

output to a file by adding >filename (and then scanning this file) or

piping the output to another program is a good idea.

8.2 The Sockets API

If using the second, direct TCP socket method, a script is not used and

instead just the command and options are specified and sent through

a socket.

There is a wrinkle though, and that is that the communication must be

done using secure sockets (SSL) and this creates a few extra steps. The

first thing is to get the remote certificate for the SSL connection. Then

the commands can be issued. The two subsections below detail this

with python source examples.

8.2.1 Get Remote Certificate

The first thing to do is to retrieve the SSL certificate from the Emulator

and store this in a file where it can be used later.

In our sample python script that is done like this:

def getRemoteCert(self):

 certData = ssl.get_server_certificate((self.host, self.port),

 ssl_version=ssl.PROTOCOL_TLSv1)

 if not len(certData):

 raise IneError('Unable to retrieve certificate from the server')

 try:

 fpath = tempfile.gettempdir() + '/server.crt'

 f = open(fpath, 'w')

 f.write(certData)

 self.cert = f.name

 f.close()

 except:

 raise IneError('Unable to store server certificate to establish

SSL connection')

In summary this amounts to:

• Request the remote certificate from the Emulator with IP address

self.host using port self.port (7292) using the python library method

ssl.get_server_certificate with SSL version set to TLSv1

• Store the certificate in a temp file with the name server.crt

NE-ONE Emulator CLI Scripting and API Guide V4.0

36

8.2.2 Issue the commands

Having got the certificate (which it is clearly not necessary to do for

each command) you can use it to send commands to the Emulator.

The method showing python source examples is:

• Create a socket

s = socket.socket(socket.AF_INET,

socket.SOCK_STREAM)

• Wrap it with the SSL layer:
sslsock = ssl.wrap_socket(s, ca_certs=self.cert,

cert_reqs=ssl.CERT_REQUIRED,ssl_version=ssl.PROTOCOL

_TLSv1)

• Connect the ssl socket – port 7292

 sslsock.connect((self.host, self.port))

• Send command and options (c)

sslsock.sendall(c)

• Read response

data = sslsock.recv(4096).decode()

• Process the response and check for errors (--error)

• Further commands? …repeat from Send command and options

• Finally - Close Socket

sslsock.close()

NE-ONE Emulator CLI Scripting and API Guide V4.0

37

9 Troubleshooting

9.1 Unicode Error from Client

Sometimes (particularly on Windows) you may see errors similar to this:

C:\Users\Lara>python necli.py --host 192.168.202.194 --user

admin --password admin -getVersion

--error "charmap' codec can't encode character '\u2013' in

position 17: character maps to <undefined>"

If you look carefully there is only one – in front of the getVersion option

(even though you’re convinced you typed two of them) so this

appears to be the problem. You therefore add another – and get

exactly the same error.

What has happened here is that perhaps while documenting with MS

Word it changed your original --getVersion (i.e. minus minus getVersion)

into –getVersion (longdash getVersion) because this looks nicer to read.

Longdash is however not an ascii (7 bit or 8 bit) character and has the

Unicode value of 2013 – hence the error message. To fix it make sure

you’re using two proper (short) dashes.

